Analysis of fuzzy logic methods for forecasting customer churn

نویسندگان

چکیده

The object of research is the process predicting churn customers telecommunications companies based on fuzzy logic and neural networks. carried out application an approach that implemented through combined use main assumption study hypothesis a network formed basis algorithms can improve accuracy customer relative to available solutions. This result can’t be achieved neglecting existing resource constraints requirements, which must determined separately for each case research. relevance problem forecasting with large number users considered. A model proposed feature this test sample normalized data used at networks, are processed form parameters membership functions correspond inference system, is, conclusions made apparatus. Also, find function, used. Such systems previously known information, learn, gain new knowledge, predict time series, perform image classification, besides, they quite visual user. methods considered, make it possible obtain in inference. expediency choosing these explained by fact were automatic control showed sufficiently high quality results. prospects using outflow shown, results software implementation presented.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

an application of fuzzy logic for car insurance underwriting

در ایران بیمه خودرو سهم بزرگی در صنعت بیمه دارد. تعیین حق بیمه مناسب و عادلانه نیازمند طبقه بندی خریداران بیمه نامه براساس خطرات احتمالی آنها است. عوامل ریسکی فراوانی می تواند بر این قیمت گذاری تاثیر بگذارد. طبقه بندی و تعیین میزان تاثیر گذاری هر عامل ریسکی بر قیمت گذاری بیمه خودرو پیچیدگی خاصی دارد. در این پایان نامه سعی در ارائه راهی جدید برای طبقه بندی عوامل ریسکی با استفاده از اصول و روش ها...

Hierarchical Alpha-cut Fuzzy C-means, Fuzzy ARTMAP and Cox Regression Model for Customer Churn Prediction

As customers are the main asset of any organization, customer churn management is becoming a major task for organizations to retain their valuable customers. In the previous studies, the applicability and efficiency of hierarchical data mining techniques for churn prediction by combining two or more techniques have been proved to provide better performances than many single techniques over a nu...

متن کامل

A Neuro-Fuzzy Classifier for Customer Churn Prediction

Churn prediction is a useful tool to predict customer at churn risk. By accurate prediction of churners and non-churners, a company can use the limited marketing resource efficiently to target the churner customers in a retention marketing campaign. Accuracy is not the only important aspect in evaluating a churn prediction models. Churn prediction models should be both accurate and comprehensib...

متن کامل

A Fuzzy Rule-Based Learning Algorithm for Customer Churn Prediction

Customer churn has emerged as a critical issue for Customer Relationship Management and customer retention in the telecommunications industry, thus churn prediction is necessary and valuable to retain the customers and reduce the losses. Recently rule-based classification methods designed transparently interpreting the classification results are preferable in customer churn prediction. However ...

متن کامل

Mobile Operator Customer Classification in Churn Analysis

Customer churn is a grave problem for all mobile operators. Early identification of customers from the risk group could help retain them in the operator's network. This paper introduces a set of potential churn factors on which data can be relatively easily extracted from the operator’s databases and analyzed using the SAS® Enterprise Guide®. A multi-stage research procedure utilizing such real...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Technology audit and production reserves

سال: 2021

ISSN: ['2664-9969', '2706-5448']

DOI: https://doi.org/10.15587/2706-5448.2021.225285